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A central point of disagreement, in certain long-standing discussions
about a particular whaling dataset in the Scientific Committee of the Inter-
national Whaling Commission, has directly involved model selection issues
for linear mixed effect models. The biological question under discussion is
associated with a clearly defined parameter of primary interest, a focus pa-
rameter, which makes model selection with the Focused Information Crite-
rion (FIC) more appropriate than other selection methods. Since the existing
FIC methodology has not covered the case of linear mixed effects models, this
article sets up the required framework and develops the necessary formulae
for the relevant FIC. Our new criterion requires the asymptotic distribution
of estimators derived for a given candidate linear mixed model but with be-
haviour examined under a wider linear mixed model. These results, needed
here to build our FIC, also have independent interest.

1. Introduction. Linear mixed effect (LME) models have become a standard modelling
tool for many problems in ecology and evolution (Bolker et al. (2009)) as well as in many
other fields where clustered or longitudinal data appear. A simple net search yields many
papers and books, where LME models are used in social and physical sciences, in biology,
demography, etc. Ecological data typically exhibit dependencies, due, for example, to re-
peated sampling of observations within the same time unit or within the same space (Grueber
et al. (2011)). LME models provide a framework for taking such dependencies into account.

As motivation for the methodological work presented in this article, we will study the
Antarctic minke whale (Balaenoptera bonaerensis) data from the Japanese Whale Research
Program under Special Permit in the Antarctic (the so-called JARPA 1, hereafter JARPA,
see Government of Japan (1987)). This dataset contains many potential sources of dependen-
cies, a typical characteristic of many ecological data. Crucially, the dataset has found itself
at the centre of some long-standing discussions in the Scientific Committee of the Interna-
tional Whaling Commission (IWC-SC) with some of the central questions concerning model
selection with LME models. Although few ecological analyses have been subject to critical
scrutiny at this level, the challenge of model selection remains of high importance in many
biological applications.

The JARPA minke whale dataset contains measurements on a large number of Antarctic
minke whales caught over 18 consecutive years, from 1987/88 to 2004/05. One of the main
research questions has been whether the body condition of the whales has decreased during
the study years. The fat weight of each dissected whale is taken as a proxy for its body con-
dition and is used as the response variables in the analyses presented here. Several covariates
of potential relevance were also recorded, including the year of capture, the date within each
year, the sex, the body length and different spatial covariates. The parameter describing the
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yearly change in body condition, hereafter referred to as the yearly decline, is the parame-
ter of main interest (which we will call the focus parameter; note that, in general the focus
parameter can be a function of several of the model parameters).

The data were first analysed in Konishi et al. (2008) using linear regression models. These
analyses faced criticism in the IWC-SC, mainly concerning the choice of model and the
potential sources of dependencies left unaccounted for. In the following years many amend-
ments and other analyses have been proposed in the IWC, for instance, Konishi and Walløe
(2015), de la Mare, McKinlay and Welsh (2017) and McKinlay, de la Mare and Welsh (2017),
including our own contribution in Cunen, Walløe and Hjort (2017). One of the central points
of disagreement has been the choice of model selection criteria for LME models. The number
of potential covariates in the dataset leads to a large number of candidate models to choose
between. The choice of model can influence the estimate and the standard errors of the param-
eter of main interest. In addition, one is interested in choosing between models containing the
focus parameter or not (an implicit test of the size of the yearly decline). There are many pos-
sible choices of model selection criteria for LME models (Müller, Scealy and Welsh (2013)),
and the choice between them depends on the type of data and models at hand and on the goal
of the model selection.

Practitioners may be interested in model selection for different, overlapping reasons. On
one hand the goal might be to select the candidate model which in a relevant sense is the clos-
est to the true data generating mechanism. Criteria based on model fit and some penalisation
for complexity aim at this goal; for LME models there exists a large number of criteria of this
type, see references in Section 3. On the other hand, practitioners often seek a small model
offering precise estimates of the quantities in which they are interested. These two goals
are related, but methods tailored for the first goal may, in some instances, be suboptimal or
irrelevant for the second. Model selection procedures based on the focused information cri-
teria (FIC) aim at the second goal: selecting models giving the most precise estimates of the
quantity that we are interested in, the focus parameter (Claeskens and Hjort (2003, 2008a)).
Since the existing FIC methodology did not cover the case of LME models, we have devel-
oped an FIC for these models which is derived and discussed in this article. Crucially, our
FIC framework is perfectly suited for addressing one of the main questions in the JARPA
dataset—finding a model that estimates the yearly decline with the best precision.

The purpose of FIC is to select a model which minimises the estimated risk associated with
the focus parameter. For example, let the focus parameter under scrutiny be the parameter
representing a linear relationship between body condition and year, βyear. Each candidate
model M leads to an associated estimate β̂M,year. These carry mean squared errors, or risks,
say

mseM = E(β̂M,year − βyear)
2 = Var β̂M,year + (Eβ̂M,year − βyear)

2.(1.1)

Here, the expectations and variances are taken with respected to the assumed true data gen-
erating mechanism. The FIC scheme is then to estimate each of these risk measures from
data,

FIC(M) = m̂seM.

This necessitates working out good approximations to biases, variances and covariances, and
then constructing estimators for these again. Importantly, the apparatus we develop can, of
course, be applied more generally to any focus parameter besides the βyear of the JARPA
study.

Our article is structured as follows. In Section 2 we start with an illustration of the use
of FIC in a very simple setting. That section provides the necessary intuition to readers not
already familiar with FIC. Section 3 sets the basic framework with LME formulation and
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notation along with a brief description of existing model selection criteria. Then, in Section 4
we examine the behaviour of estimators used for one candidate LME model but under the
assumption that the data generating mechanism is a different LME model. Regarding such
consequences of LME model misspecification, there are several aspects of interest. The main
purpose here, however, is to use these results and insights to develop the FIC approach in
Section 5. In Section 6 we report on relevant simulation experiments. The application of the
model selection machinery to the JARPA data, concerned indeed with assessing the mseM

of (1.1) for a list of relevant candidate models, is discussed in Section 7. Finally, Section 8
offers further relevant discussion points and a list of concluding remarks.

2. Simple illustration of FIC. We begin with an illustration of the motivation underly-
ing FIC in a very simplified setting. Here, we will consider ordinary linear regression models
(which, of course, are a special case of an LME model). Readers already familiar with FIC
may skip this section.

Assume that we have n = 20 measurements of, for example, body condition (y) over time
(x), say years, and that we are particularly interested in obtaining a good estimate of the body
condition at a particular time point, for instance, after nine years. This quantity is our focus
parameter μ = E(Y | x0 = 9). Further, say we have good biological reasons to assume that
the following model is the true data generating mechanism, that is, the wide model,

yi = α + βxi + γ x2
i + εi(2.1)

with i = 1, . . . , n and εi ∼ N(0, σ 2). Our focus parameter can then be expressed as μwide =
Ewide(Y | x0 = 9) = θ txf , with column vectors θ = (α,β, γ )t and xf = (1, x0, x

2
0)t. A natural

estimator is μ̂wide = θ̂ txf = α̂ + 9β̂ + 92γ̂ , using ordinary least squares. The idea underlying
FIC, which we hope to illustrate here, is that, even though the wide model in (2.1) is the true
model, a different model may provide more precise estimates of μ, at least in parts of the
parameter space.

Let the candidate model be a smaller model, yi = αM + βMxi + εi and εi ∼ N(0, σ 2
M).

Here, the natural estimator of the focus parameter is μ̂M = θ̂ t
Mxf,M = α̂M + 9β̂M , with θM =

(αM,βM)t and xf,M = (1, x0)
t. Clearly, this quantity is in general different from the μ̂wide

from the wide model. The smaller model can still serve as an approximation to the truth,
producing estimates of μ, which typically will be biased, but can have lower variance.

For the n = 20 datapoints in Figure 1, we obtain μ̂wide = 38.9 and μ̂M = 32.3. Which
of these two estimates should we prefer, that is, should we trust the most? Throughout this
paper we will seek to select the estimator and, by extension, the model which estimates the

FIG. 1. The n = 20 datapoints and two estimated regression lines, for the wide model in blue and for the
candidate model in dashed red. The vertical green line marks x0 = 9, the point where we want to evaluate the
expected body condition.
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focus parameter with the best precision. We evaluate the precision of the two estimators by
considering their risk in terms of mean squared errors,

mse(μ̂wide; θ, σ ) = (Ewideμ̂wide − μ)2 + Varwide μ̂wide,

mse(μ̂M; θ, σ ) = (Ewideμ̂M − μ)2 + Varwide μ̂M.

These quantities are functions of θ and σ , the true parameters in the wide model, and also
of the sample size n, the observed covariate matrix X and the particular year of interest x0.
The subscript in Ewide and Varwide is meant to emphasise that the expectations and variances
are taken with respect to the true, wide model. The simplicity of the linear regression models
allows us to work out exact risk formulas. Let x be the column vectors of observed years,
X = [1, x, x2] be the n × 3 design matrix in the wide model and XM = [1, x] be the n × 2
design matrix in the candidate model. Then,

mse(μ̂wide; θ, σ ) = 0 + σ 2xt
f

(
XtX

)−1
xf ,

mse(μ̂M; θ, σ ) = (
xt
f,M

(
Xt

MXM

)−1
Xt

MXθ − xt
f θ
)2(2.2)

+ σ 2xt
f,M

(
Xt

MXM

)−1
xf,M.

The estimator from the wide model has zero bias by definition. For the particular dataset
shown in Figure 1, where we have drawn a dataset from the wide model with α = 80, β =
−10, γ = 0.5, σ = 15, the true root mse values are then√

mse(μ̂wide; θ, σ ) = 9.00 and
√

mse(μ̂M; θ, σ ) = 8.38.

So, in this case the estimator from the smaller model is more precise, even though it has some
bias (around 5.02).

Since the mse formulas in (2.2) are functions of unknown parameters, one needs to esti-
mate their values when faced with a real dataset. In this case this would essentially amount to
plugging in the maximum likelihood estimates of the necessary parameters into (2.2). These
estimated mean squared errors are the FIC scores of the two models. For the data in Figure 1,
we obtain √

ficwide = 9.90 and
√

ficM = 7.44.

Note that we usually prefer to present root-fic scores and root mse, since these quantities are
on the scale of the response variable. In this case the FIC scores are reasonably good esti-
mates of the true mse values and correctly identify the smaller model as the best model for
estimating the focus parameter. In simple cases like this one, the mse formulas and their esti-
mates are immediately available from basic statistical knowledge. In general situations exact
formulas are not available, and one needs to settle for approximations of the true risk func-
tions, usually obtained through large-sample considerations. The FIC framework, described
in the following sections, offers a way to obtain estimated risks in the case of LME models.

3. Setup and existing approaches. In this section we provide a short overview of the
LME model, along with the necessary notation, and a review of some existing model selec-
tion approaches. In the next section we go into how estimators constructed using one LME
candidate model behave when the data generating mechanism is a different and perhaps wider
LME model.
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3.1. Linear mixed effect models. Suppose there are n natural groups in our data, with mi

potentially dependent observations within group i. The groups often correspond to observa-
tions collected in the same space or time and are often referred to as subjects or individuals
in the statistical literature. In the whaling example the groups are defined by the year of
sampling (more on this in Section 7). The general LME model takes the form

yi = Xiβ + Zibi + εi for i = 1, . . . , n(3.1)

with yi an mi × 1 vector of responses for the ith group, Xi a known mi × p design matrix of
covariates and Zi a known mi ×k design matrix corresponding to the random effects. Let β be
the p × 1 vector of fixed effect coefficients and bi the group-specific k × 1 vector of random
effects, with bi ∼ Nk(0, σ 2D) and assumed independence across groups. The errors εi are
independently distributed Nmi

(0, σ 2I ). In applications it is common to choose Zi equal to a
subset of the columns in Xi , but the following developments are valid for any choice of Zi .
The full parameter of the model is θ = (β, σ,D), with p fixed effects, k random effects and
k(k + 1)/2 separate parameters for the symmetric positive definite k × k matrix D, yielding
a total of d = p + 1 + k(k + 1)/2 unknown parameters.

The model can also be written in a marginal form as

yi ∼ Nmi

(
Xiβ,σ 2(I + ZiDZt

i

))
.(3.2)

The corresponding marginal log-likelihood for one group is

	i(θ) = −1

2

[
mi log

(
σ 2)+ log

(∣∣I + ZiDZt
i

∣∣)
+ σ−2(yi − Xiβ)t(I + ZiDZt

i

)−1
(yi − Xiβ)

]
.

(3.3)

Assuming that the model is correct, we have classical results in, for instance, Pinheiro and
Bates (2000) and Verbeke and Lesaffre (1997), stating that the maximum likelihood (ML) es-
timates θ̂ are consistent and asymptotically normal with asymptotic covariance matrix equal
to the inverse Fisher information matrix. The information matrix (normalised by sample size)
has the following block-diagonal form, for instance, from Demidenko (2013):

Jn = n−1
n∑

i=1

⎡⎢⎢⎣
σ−2Xt

iV
−1
i Xi 0 0

0 2miσ
−2 σ−1 vec(Ri)

tWk

0 σ−1W t
k vec(Ri)

1

2
W t

k(Ri ⊗ Ri)Wk

⎤⎥⎥⎦ .(3.4)

Here, ⊗ is the Kronecker product, the vec vectorisation operation stacks the columns of the
input matrix into a long vector,

Vi = I + ZiDZt
i , Ri = Zt

iV
−1
i Zi,

and Wk is the so-called duplication matrix of size k2 × k(k + 1)/2. These mathematical
linear algebra tools, used here to reach accurate descriptions and then algorithms for variance
matrices, are treated in Appendix B.

We note that the block-diagonal structure here implies that the ML estimator of β becomes
asymptotically independent of the estimators of the variance-covariance parameters. This
relationship holds when the model is correctly specified but not when it is misspecified, as
we will see in the next section.
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3.2. Existing model selection approaches for LME models. Müller, Scealy and Welsh
(2013) offer a comprehensive review of most existing frameworks for model selection in
LME models. In fact, they treat a somewhat wider class of models than we do here. Simi-
lar to most of the literature on LME models, we limit ourselves to what Müller, Scealy and
Welsh (2013) call the “independent cluster model,” where each observation belongs to only
one natural group and all groups are independent of each other, giving a block diagonal co-
variance matrix for the yi . The authors describe and compare four classes of model selection
methods: information criteria, shrinkage methods, fence methods and a few Bayesian meth-
ods (e.g., Chen and Dunson (2003)). A large number of AIC- and BIC-like criteria exist in the
literature, differing in their loss functions and in their penalty terms. The loss functions are
usually some form of log-likelihood, either the marginal log-likelihood related to (3.3), the
reduced or restricted log-likelihood associated with the REML methods (see, e.g., Gumedze
and Dunne (2011) and Demidenko ((2013), Chapter 2)) or the conditional log-likelihood. The
most commonly used information criterion in this class is the so-called marginal AIC, which
uses the marginal log-likelihood and the straightforward penalty d = p + q (where q is the
number of variance-covariance parameters; in our formulation we have q = 1 + k(k + 1)/2).
Alternatively, there exists a large number of variants of the so-called conditional AIC; see, for
instance, Vaida and Blanchard (2005). Some of the information criteria methods are designed
for only selecting among the regression coefficients, like the recently proposed meanAIC by
Craiu and Duchesne (2018) (but which is aimed at the whole generalised linear mixed model
(GLMM) class).

When the number of candidate models under consideration is large, shrinkage methods
may have an advantage over information criteria, partly because it may be computationally in-
feasible to evaluate all 2p+q candidate models. Shrinkage methods for LME models choose a
candidate model by solving an optimisation problem with a LASSO-type criterion consisting
of two terms, a measure of model fit and a penalty function ensuring that both the estimated
coefficients and variance-covariance parameters may be shrunk to zero. In Bondell, Krishna
and Ghosh (2010) and Ibrahim et al. (2011) the model fit is evaluated via the marginal log-
likelihood, while in Peng and Lu (2012) a least squares criterion is used. These three meth-
ods also differ in their choice of penalty functions. Recently, Hui, Müller and Welsh (2017)
proposed a method combining the penalised quasilikelihood as a measure of model fit with
adaptive lasso penalty functions.

Other model selection approaches include the fence method, originally proposed in Jiang
et al. (2008). The method consists of estimating the loss of each candidate model (e.g., as the
negative log-likelihood), finding the model with the minimal loss and constructing a fence
around this model containing all the candidate models with a loss sufficiently close to the
minimal loss. The small set of models within the fence can then be investigated more care-
fully, for example, selecting the least complex one.

The model selection methods briefly described here all assume, directly or indirectly, that
the user wishes to identify a model which maximises the fit to the data with a trade-off
against complexity. This is also apparent through the choice of criteria for evaluating the
model selection procedures used in the simulation studies of the aforementioned articles;
most concern the probability of selecting the true (or correct) model or maximising some
measure of fit. The FIC approach, introduced in Section 2, is different in aim and spirit:
there, the goal of model selection is to identify the model which provides the most precise
estimate of the focus parameter.

4. Behaviour of LME estimators under misspecification. In order to develop our FIC
machinery in the next section, we need results regarding the behaviour of estimators con-
structed for one LME model but examined when the real data generating mechanism is a
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different LME model. What we derive below leads to precise answers to the pertinent ques-
tions in any situation where the true mechanism is some LME model A but where LME
model B is used to generate estimators. Our use of these results and insights will be in a
context where model A is a well defined and well thought through “wide model,” assumed to
hold, and where a list of candidate models is being considered for comparison and ranking,
say M1, . . . ,Mr . The choice and use of such a wide model is discussed further in Section 5.
We emphasise that the candidate models, generically called M below, do not have to be sub-
models of the wide model.

4.1. Behaviour of the estimators from the candidate model. Let the wide model be de-
fined as in Section 3, with the true parameter vector

θtrue = (βtrue, σtrue,Dtrue)(4.1)

governing LME data as in (3.1) and (3.2); we also assume that Dtrue is positive definite. In
addition, we contemplate using a different LME model, the candidate model M . We assume
that this model is defined with respect to the same n groups as in the (3.1) formulation, and
we write

yi ∼ Nmi

(
XM,iβM,σ 2

M

(
I + ZM,iDMZt

M,i

))
.(4.2)

This model has design matrices, XM,i and ZM,i , potentially different from those of the wide
model and, hence, also a different set of parameters, say θM = (βM,σM,DM). Often, but
not necessarily, the candidate model will involve a subset of the covariates (i.e., columns)
included in Xi and Zi , respectively. Let the covariate matrix XM,i have dimension mi × pM ,
with ZM,i being mi ×kM and, hence, DM being kM ×kM . We denote by dM the total number
of parameters in the candidate model.

The ML estimates θ̂M can be obtained in the usual fashion, that is, numerically maximising
the log-likelihood function associated with M . Under natural conditions these will aim for
the least false parameters

θM,0 = (βM,0, σM,0,DM,0),(4.3)

minimising the Kullback–Leibler divergence from the wide model to the candidate model,
say

∫
f (y, θtrue) log{f (y, θtrue)/fM(y, θM)}dy with fM(y, θM) denoting the density of the

full dataset, under model M . Here, “aiming for” will mean “converging in probability to,”
with the right large-sample setup, with n growing; see below. In more practical terms this
translates to θ̂M having high probability of coming close to this θM,0.

Minimising the divergence corresponds to solving the following equation for θM,0:
n∑

i=1

EwideuM,i(y, θM,0) = 0 where uM,i(y, θM) = ∂	M,i(θM)/∂θM,

the score function of the candidate model, via 	M,i , the log-likelihood for the ith group of the
candidate model. The least false parameters θM,0 of (4.3) depend on the true parameters, θtrue,
of the data generating mechanism and also on the covariate matrices Xi and Zi associated
with the dataset. With some algebra, the three parts of the θM,0 of (4.3) can be seen to be the
solutions of the following three equations. First,

βM,0 =
(

n∑
i=1

Xt
M,iV

−1
M,0,iXM,i

)−1 n∑
i=1

Xt
M,iV

−1
M,0,iXiβtrue,

σ 2
M,0 = 1

ntot

n∑
i=1

{
μt

e,iV
−1
M,0,iμe,i + σ 2

true Tr
(
V −1

M,0,iVi

)}
,

(4.4)
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with VM,0,i = I + ZM,iDM,0Z
t
M,i , μe,i = Xiβtrue − XM,iβM,0 and ntot =∑n

i=1 mi . Next,

σ 2
M,0n

−1
n∑

i=1

Zt
M,iV

−1
M,0,iZM,i = σ 2

truen
−1

n∑
i=1

Zt
M,iV

−1
M,0,iViV

−1
M,0,iZM,i

+ n−1
n∑

i=1

Zt
M,iV

−1
M,0,iμe,iμ

t
e,iV

−1
M,0,iZM,i.

(4.5)

Note here that if the candidate model has all the right Xi , but not necessarily the right Zi ,
then βM,0 = βtrue, which means that the β̂M is essentially unbiased for the correct βtrue of the
wide model.

Via some general arguments, similar to those used in Claeskens and Hjort ((2008a), Chap-
ter 2) for deriving large-sample approximations of ML estimators outside model conditions,
one can demonstrate that( √

n(θ̂ − θtrue)√
n(θ̂M − θM,0)

)
=
(

J−1
n Un

J−1
M,nUM,n

)
+
(

δn

δM,n

)
.(4.6)

Here, Jn is as in (3.4) but evaluated at θtrue. We also have

JM,n = −n−1
n∑

i=1

Ewide∂
2	M,i(θM,0)/∂θM∂θ t

M;

Un = n−1/2
n∑

i=1

∂	i(θtrue)/∂θ; UM,n = n−1/2
n∑

i=1

∂	M,i(θM,0)/∂θM;

and δn and δM,n are remainder terms becoming small in probability. Here,(
Un

UM,n

)
≈d Nd+dM

(
0,

(
Jn CM,n

Ct
M,n KM,n

))
,(4.7)

in which

KM,n = n−1
n∑

i=1

Varwide uM,i(y, θM,0),

CM,n = n−1
n∑

i=1

Covwide
{
ui(y, θtrue), uM,i(y, θM,0)

}
.

We provide explicit formulae for the matrices JM,n,KM,n,CM,n in Appendix B. Note that
the expectations and variances are taken with respect to the wide model. The JM,n and KM,n

matrices will typically be different from each other, and KM,n, in particular, will have a more
complex form than for the Jn given in (3.4). In particular, the matrices will, in general, no
longer be block-diagonal.

In (4.7) “≈d” means “approximately distributed as,” and a precise asymptotic statement
is that (Un,UM,n) converges in distribution, under mild Lindeberg type regularity condi-
tions, to a multivariate zero-mean normal (U,UM) with covariance matrix having compo-
nents J,CM,KM , the appropriate limits of Jn,CM,n,KM,n. Under yet further but still mild
regularity assumptions, the remainder terms in (4.6) will tend to zero in probability, and the
left-hand side of (4.6) has its consequent clear limit distribution, namely,(

J−1U

J−1
M UM

)
∼ Nd+dM

(
0,

(
J−1 J−1CMJ−1

M

J−1
M Ct

MJ−1 J−1
M KMJ−1

M

))
.(4.8)
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The practical translation of this precise limit theorem is the directly useful approximation( √
n(θ̂ − θtrue)√

n(θ̂M − θM,0)

)
≈d Nd+dM

(
0,

(
J−1

n J−1
n CM,nJ

−1
M,n

J−1
M,nC

t
M,nJ

−1
n J−1

M,nKM,nJ
−1
M,n

))
.(4.9)

We have reached precise results and formulae for how LME estimators from different can-
didate models M behave, assuming that there is a certain wide LME model which generates
the data. These results ought to have independent interest, e.g. for examining robustness, con-
sequences of model misspecifications, etc. We also learn that the fixed effects part β̂M and
the variance parts σ̂M and D̂M of a candidate model may exhibit dependence. This clashes
with how estimator behaviour results for LME models are typically expressed in the litera-
ture. The reason is the block diagonal structure for the model based information matrix (3.4),
where we find that the J−1

M,nKM,nJ
−1
M,n matrix of (4.9) is in general not block diagonal. Our

present mandate is using (4.9) not to assess model misspecification issues, per se, but to find
the required ingredients for the FIC, in Section 5.

4.2. The approximate distribution of a focus parameter estimator. Consider a focus pa-
rameter, say μ, like “the yearly decline” for the minke whale application sketched in Section 1
or the probability p(Ynew > y0 | x0, z0) that a future or not observed Ynew with covariate vec-
tors x0, z0 will be bigger than some threshold y0. The user needs to provide a definition of
μ for each candidate model; typically, μ will have a clear statistical interpretation. For the
wide model we assume μ = μ(θ) can be expressed as a smooth function of θ = (β, σ,D).
The ensuing ML estimator using the wide model is μ̂ = μ(θ̂), aiming at the true value
μtrue = μ(θtrue). For a candidate model M the μ can be expressed in terms of that model’s pa-
rameter vector, say μM = μM(θM), with θM = (βM,σM,DM) and with μM(·) also a smooth
function. The ML estimator using model M is μ̂M = μM(θ̂M), aiming for the corresponding
least false parameter value μ0,M = μM(θM,0), with θM,0 = (βM,0, σM,0,DM,0) as in (4.3).

Now, introduce

c = ∂μ(θtrue)/∂θ and cM = ∂μM(θM,0)/∂θM,(4.10)

column vectors of the relevant lengths. Via delta method arguments, see, for exam-
ple, Schweder and Hjort ((2016), Appendix) applied to (4.9), we have the following joint
approximate distribution:( √

n(μ̂ − μtrue)√
n(μ̂M − μM,0)

)
≈ N2

(
0,

(
νwide νM,c

νM,c νM

))
,(4.11)

with νwide = ctJ−1
n c, νM,c = ctJ−1

n CM,nJ
−1
M,ncM , νM = ct

MJ−1
M,nKM,nJ

−1
M,ncM . Thus, μ̂ is ap-

proximately unbiased, whereas competing estimators μ̂M will be biased but, potentially, with
smaller variances. Note that this result, along with a precise limit distribution version, as per
(4.8), is valid for each candidate model M . We shall use this actively below for constructing
our FIC scores for candidate models.

5. The FIC approach. We start with some general objectives and principles for the FIC
approach to model selection, before applying these to classes of LME models.

5.1. The general FIC scheme. For various applications, depending also on the context,
precise estimates for one or more focus parameters are more important to the practitioner than
identifying the “true” model or finding the model with the best overall fit. Contrary to other
information criteria and model selection procedures, the FIC aims at finding the model giv-
ing the most precise estimates of the parameter of main interest (say μ, henceforth called the
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focus parameter). The FIC was proposed in Claeskens and Hjort (2003, 2008a) and has been
successfully applied to a healthy variety of models and contexts; these include semiparamet-
ric Cox regression models (Hjort and Claeskens (2006)), additive risk models (Gandy and
Hjort (2013)), classes of time series models (Claeskens, Croux and Van Kerckhoven (2007)),
generalised additive linear models (Zhang and Liang (2011)) with application areas ranging
from finance and economics (Brownlees and Gallo (2008) and Behl et al. (2012)) to fisheries
(Hermansen, Hjort and Kjesbu (2016)). Another and related FIC approach has been devel-
oped in Jullum and Hjort (2017, 2019). These two perspectives on the FIC relate partly to the
definition of the widest potential candidate model and, partly, to the mathematical tools used
to approximate and assess mean squared errors, cf. (1.1), as further commented upon below.

The general FIC procedure consists of estimating the risk associated with each candidate
model’s estimate of the focus parameter and then choosing the model with the smallest esti-
mated risk. The most common risk measure is the mean squared error (mse), due to its natural
interpretation and convenient separation into variance and squared-bias parts,

mse(μ̂) = Var μ̂ + b2 = Var μ̂ + (Eμ̂ − μ)2.

Again, the expectations and variances are taken with respect to the assumed true data gen-
erating mechanism, which we call the wide model. In the next sections we will estimate the
variance and squared bias parts separately. For a candidate model M we will provide FIC
formulae of the form

(5.1) ficM = m̂se(μ̂M) = b̂sqM + v̂M/n,

where b̂sqM is an estimate of the squared bias and v̂M/n an estimate of the variance of μ̂M ,
the estimated focus parameter from model M . As before, n is the number of groups in the
data.

Originally, as presented in Claeskens and Hjort (2003, 2008a), Hjort and Claeskens (2003)
and as successfully followed for a range of later FIC constructions and contributions in the
literature, the mean squared error is estimated via large-sample approximations derived inside
a certain local misspecification framework. This in particular means working with asymptotic
approximations coming out of a machinery where candidate models are within O(1/

√
n) of

each other and where n is sample size (or, in the present framework, the number of natural
groups in the data). Such a framework leads to clear FIC formulae in many situations but is
not necessarily well suited for all classes of models.

When it comes to LME models, there is a gap in the FIC literature. The O(1/
√

n) setup
alluded to above may be worked with also for LME models, but with certain added issues
and complexities, partly due to the fact that zero is not an inner point in the parameter spaces
for the variances implied by the random effects. We shall instead work with a fixed wide
model, which the user has to specify; cf. our setup for Section 4 above. Here, “fixed” refers
to the fact that the wide model does not change with n. This wide model should be sensible
and flexible, that is, rich enough in its parametrisation to encompass plausible submodels
and also biologically well motivated. Such a wide model will often be too complex to be
the model actually selected in the end, since its implied standard errors for model parameters
might easily be unnecessarily large. Its role, conceptually and operationally, is partly to secure
means, biases, variances, covariances clear definitions, also for all candidate models, needed
for (5.1).

Our FIC procedure will guide the user in choosing among a set of candidate models, often
selecting a smaller model with less variable estimates, but, potentially, introducing some
bias. The set of candidate models ought to be chosen with some care. Reducing the set of
candidate models saves computational resources, enhances performance and guards against
certain issues and problems with postselection inference.
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To work out FIC scores of the type (5.1) for LME candidate models, we need mse expres-
sions for the different μ̂M . We get such from the joint distribution of (4.11). The canonical
mse expressions are

(5.2) mse(μ̂wide) = 02 + νwide/n and mse(μ̂M) = b2
M + νM/n

for estimators from the wide model and candidate model, respectively. The wide model esti-
mator entails no bias, that is, μ̂ aims for μtrue, whereas the bias related to the candidate model
is bM = μM,0 − μtrue. When it comes to model selection, we need to estimate b2

M and νM/n

for the appropriate list of candidate models.

5.2. Estimation of the necessary quantities. FIC formulae are worked out below, in the
spirit of (5.1), as natural estimators of the mse expressions of (5.2). We need good estimators
of the quantities appearing there. For the variances νwide and νM we have two general options;
we discuss these first, before coming to the squared bias.

The first consists in using the formula for Jn in (3.4) and the formulae for JM,n, KM,n,
CM,n in the Appendix, and then plugging in the ML estimate θ̂ for θtrue from the wide model
and the ML estimate θ̂M for the candidate model. Upon noting that, for example, JM,n can
be expressed as JM,n(θtrue, θM,0) and, similarly for the others, we may write

Ĵn = Jn(θ̂), ĴM,n = JM,n(θ̂ , θ̂M),

K̂M,n = KM,n(θ̂ , θ̂M), ĈM,n = CM,n(θ̂ , θ̂M).

Actually, ĈM,n is not required for the variances, only for the squared bias; see below. We can
use either ML estimates or REML estimates, since these are large-sample equivalent (see for
instance Demidenko ((2013), Chapter 3)).

An alternative is to use the Hessian matrices from the optimisation routines as esti-
mates of Jn and JM,n. The estimates for the remaining matrices can be computed as
K̂M,n = n−1∑n

i=1 uM,i(y, θ̂M)uM,i(y, θ̂M)t and ĈM,n = n−1∑n
i=1 ui(y, θ̂)uM,i(y, θ̂M)t. For

our applications in this article, we have used the first option with plug-in for θtrue and θM,0.
We use

ĉ = ∂μ(θ̂)/∂θ and ĉM = ∂μM(θ̂M,0)/∂θM

for (4.10), and these are straightforward to compute numerically in cases where explicit ex-
pressions are unavailable.

There are also different options for the estimation of the squared bias, that is, b2
M ,

with bM = μM,0 − μtrue. We begin from the natural b̂M = μ̂M − μ̂. A naive start estima-
tor would be b̂2

M . However, this estimator for b2
M overestimates the squared bias, in that

Eb̂2
M = (Eb̂M)2 + Var b̂M . An estimator repairing for this overshooting is, therefore,

(5.3) b̂sqM = (μ̂M − μ̂)2 − V̂arb̂M,

the latter term being an estimate of the variance. From (4.11) we have that Var b̂M ≈
n−1(νwide + νM − 2νM,c). We have estimates of all the necessary terms from the arguments
in the previous paragraph and obtain the following final estimator:

(5.4) b̂sqM = (μ̂M − μ̂)2 − n−1(̂νwide + ν̂M − 2ν̂M,c).

Note that in some cases we can get a negative estimate of the bias squared. In some FIC
schemes it is common to truncate the bias squared estimate to zero, rather than allowing neg-
ative estimates (see, for instance, Claeskens and Hjort (2008a)). For the LME case our sim-
ulation studies indicate that the FIC version with the untruncated bias squared estimate from
(5.4) has better practical performance than the version where we truncate negative estimates
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to zero. When we do not truncate, the FIC scores are, approximately, unbiased estimates of
the mse.

Instead of using ĈM,n and the other matrices for estimating Var b̂M , we can obtain an
estimate by parametric bootstrapping from the estimated wide model. We generate new ob-
servations from the estimated wide model; we fit both the wide and the candidate model
and obtain a new estimate of the bias b̂M,l = μ̂M,l − μ̂l . Here, the subscript l indicates that
this is the bias associated with the lth bootstrap sample. The procedure is repeated a number
of times, and Var b̂M is estimated by the empirical variance of the b̂M,l . In the simulations
and application we have used the first option for estimating the squared bias, relying on the
formula for Var b̂M .

5.3. Computing FIC scores. We now have everything we need to compute the FIC scores
of both the wide model and all candidate models. It starts from having a well-defined focus
parameter μ with a clear mathematical definition in all candidate models. Using the FIC
formulae, in practice, then involves the following steps:

(a) Decide on the wide model, with parameter θ = (β, σ,D), and a list of candidate mod-
els M , with parameters θM = (βM,σM,DM). The focus parameter then needs to be expressed
as μ(θ) and μM(θM) in the wide model and the candidate model, respectively.

(b) Estimate the parameters in the wide model, yielding θ̂ (using either ML or REML, e.g.,
with R packages like lme4 (Bates et al. (2014))), and find μ̂ = μ(θ̂). Similarly, estimate the
parameters for each candidate model M , giving θ̂M , and compute μ̂M = μM(θ̂M).

(c) Differentiate μ with respect to θ for the wide model (with a formula or numerically),
at θ̂ , to find ĉ; and, similarly, differentiate μM(θM) with respect to θM for candidate model
M , at position θ̂M , to find ĉM ; cf. (4.10).

(d) Compute Ĵn = Jn(θ̂) using the formula in (3.4). The FIC score for the wide model is
then

(5.5) ficwide = n−1ν̂wide = n−1ĉtĴ−1
n ĉ.

(e) For each candidate model M , compute ĴM,n = JM,n(θ̂ , θ̂M), K̂M,n = KM,n(θ̂ , θ̂M),
ĈM,n = CM,n(θ̂ , θ̂M), using the formulae in Appendix B. Then, compute ν̂M,c = ĉtĴ−1

n ×
ĈM,nĴ

−1
M,nĉM and ν̂M = ĉt

MĴ−1
M,nK̂M,nĴ

−1
M,nĉM .

(f) For each candidate model M , estimate the squared bias of the associated μ̂M with
b̂sqM from (5.4). The FIC score for the candidate model is then

(5.6) ficM = n−1ν̂M + b̂sqM.

Note that with the bias squared estimator from (5.4) and no truncation to zero, some of
the terms in the FIC score cancel each other out. The FIC score for the candidate model can
actually be written as

(5.7) ficM = 2n−1ν̂M,c − n−1ν̂wide + (μ̂M − μ̂)2.

Thus, we do not actually need to estimate νM . Still, we often prefer to calculate, and evaluate,
the variance and bias squared parts separately.

The computed FIC scores provide a ranking of the r + 1 models under consideration, say,
with r candidate models in addition to the wide model itself. It is also very useful to produce
a FIC plot, consisting of the points

(5.8)
(
fic1/2

M , μ̂M

)
for all models. For this plotting purpose we prefer the root-FIC scores on the x axis, as
they are on the scale of the estimates themselves, the Pythagoras square root of the squared
standard deviation plus the squared bias. The farther to the left in the FIC plot, the better are
the estimates. Such plots are given in Figures 6 and 7 below, pertaining to focus parameters
for the whale dataset.



884 C. CUNEN, L. WALLØE AND N. L. HJORT

5.4. A special case. The FIC formulae presented above simplify significantly in the spe-
cial case where the wide model and all the candidate models all have D = DM = 0. This
corresponds to there being no random effects, and the models are reduced to normal linear
models (where we can consider each observation as a member of a group of size one). No-
tably, when the focus parameter is a linear combination of the regression coefficients, the
variance part becomes

νM

n
= σ 2ct

M

(
n∑

i=1

Xt
M,iXM,i

)−1

cM.

This expression is equal to the exact variance of the linear combination ct
Mβ̂M of the ML

estimator β̂M = (
∑n

i=1 Xt
M,iXM,i)

−1∑n
i=1 Xt

M,iyi . Also, the expression for Var b̂M , in the
formula for the squared bias in Section 5, turns out to be equal to the corresponding ex-
act quantity. Thus, despite stemming from large-sample approximations, the FIC formulae
presented in this article are exact (i.e. not approximate and valid for any n) in the case of
normal linear models with a focus parameter being a function of the regression coefficients.
Incidentally, in this case our FIC approach with a fixed wide model also coincides with the
FIC formulae coming out of the local misspecification framework in Claeskens and Hjort
((2008a), Chapter 6). The FIC formulae will also be exact in the related case where the co-
variance matrix of the random effects, D and DM , are assumed to be known for both the wide
and the candidate model.

6. Simulations. We illustrate our FIC procedure with a short simulation study. We sim-
ulate data with n = 20 groups, m = 15 observations in each, with p = 4 potential fixed effect
covariates X = [X0,X1,X2,X3] and k = 4 potential random effects Z = [Z0,Z1,Z2,Z3].
We set X0 = Z0 = 1 and also let Z = X, that is, each group is allowed to have a poten-
tially different intercept as well as potentially different slopes corresponding to each fixed
covariate. This is a common choice in many applications. The nonintercept covariates are
drawn from a multivariate normal distribution with zero means and relatively high correla-
tions (corr(X1,X2) = 0.45, corr(X1,X3) = 0.7, corr(X2,X3) = 0.95). Correlated covariates
are typical for many ecological applications. We present four different simulation experi-
ments below, differing only in their choice of focus parameters. The true model is

yi,j = β0 + b0,i + β1x1,i,j + β2x2,i,j + b1,iz1,i,j + b2,iz2,i,j + εi,j

with εi,j ∼ N(0, σ 2), σ = 1, β = (1,1,1)t, bi ∼ N3(0, σ 2D), and

D = (
1/σ 2)⎡⎣ 9 4 0.1

4 4 0
0.1 0 0.1

⎤⎦ .

We consider the wide model M0, along with four candidate models described in Table 1.

TABLE 1
The models used in the simulations; p is the number of fixed effects, k is the

number of random effects and d is the total number of parameters.

Description p k d

M0 X0,X1,X2,X3 and Z0,Z1,Z2,Z3 4 4 15
M1 X0,X1,X2 and Z0,Z1,Z2 3 3 10
M2 X0,X1,X2 and Z0,Z1 3 2 7
M3 X0,X1,X2 and Z0 3 1 5
M4 X0,X1 and Z0,Z1 2 2 6
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FIG. 2. Simulation results for μ1 = β1. The variance in the left panel, the squared bias in the middle panel and
the total FIC score in the right panel. The dashed red lines are the true values, the grey crosses are the variance
and squared bias parts of the FIC scores on 100 simulated datasets and the full black lines are the averages of
these.

Thus, the wide model M0 includes one unnecessary fixed effect covariate (X3), one unnec-
essary random effect (Z3) and one random effect that has very small influence (Z2). The true
model is M1 (but M0 is, of course, a correct model but with more parameters than necessary).
The models were fitted with REML.

In the first simulation experiment our focus parameter is simply one of the fixed effect
coefficients μ1 = β1. The results are shown in Figure 2 and also in Table 2. In the figure
we have the variance part in the left panel, the squared bias part in the middle panel and
the total FIC score in the right panel. The red lines are the “true” variance and squared bias
values (determined by averaging over 1000 datasets) while the grey crosses are the variance
and squared bias parts of the FIC scores evaluated in 100 (different) datasets. The black lines
are the average v̂M and b̂2

M from these 100 datasets. The true root mean squared errors for
β̂1 are given in the table. Thus, the smaller model M2 is the best model for estimating β1
in this setting (i.e., with the smallest mse), but M1 is almost as good. The wide model, with
some unnecessary parameters for both the fixed and random effects, estimates β1 with larger
variance than the best models. While the model omitting one of the important fixed effects,
M4, has β1 estimates with large bias. For 50% of the rounds, M2 or M1 were given the lowest
FIC score, while M3 was the winning model in 32% of the rounds. Thus, for many of the

TABLE 2
Simulation results for μ1 = β1. For each model we give the
true root mean squared error for β̂1, the average FIC score

and the percentage of rounds where the model has the lowest
FIC score (i.e., the winning model)

M0 M1 M2 M3 M4

True
√

mse 0.558 0.459 0.458 0.498 0.670√
fic 0.559 0.398 0.398 0.441 0.634

Winning % 4 18 32 32 14
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FIG. 3. Simulation results for μ2. The variance in the left panel, the squared bias in the middle panel and the
total FIC score in the right panel. The dashed red lines are the true values, the grey crosses are the variance and
squared bias parts of the FIC scores on 100 simulated datasets and the full black lines are the averages of these.

runs, M3 was incorrectly considered better than M2. The estimators from these two models
only had a small difference in true mse, however.

In our second experiment, the parameter of interest is μ2 = n−1∑n
i=1 corri , where corri

is the average correlation between two observations in group i. The quantity corri is thus
defined av the average of the non-diagonal elements in the correlation matrix belonging to
σ 2(I + ZiDZt

i ). The quantity depends on D and σ and is straightforward to evaluate given
the design matrix Z. The true value of this focus parameter was 0.70 (given the covariates).
The results are shown in Figure 3 and also in Table 3. The model M2 gave μ2 estimates
with the smallest mean squared error, but M0 and M1 had almost similar performance. Our
procedure selected one of these models in 82% of the runs. The worse model, M4, was never
selected by FIC.

In our third experiment, the parameter of interest was μ3 = σ , the residual standard devia-
tion. The results are shown in Figure 4 and also in Table 4. The true root mean squared errors
for μ̂3 indicate that M1 gave the most precise estimates of the standard deviation, while M3
and M4 were far worse. These two models were never selected by FIC.

The fourth experiment has μ4 = E(Y | x1 = −0.5, x2 = 0.5, x3 = −0.1) = 1 as focus pa-
rameter. This is the expected value of the response for some specific value of the covariate
vector. This focus parameter is a function of the fixed effects coefficients only, but the inclu-
sion or noninclusion of random effects still influences its estimation. Figure 5 and Table 5

TABLE 3
Simulation results for μ2. For each model we give the true root

mean squared error for μ̂2, the average FIC score and the
percentage of rounds where the model has the lowest

FIC score (i.e., the winning model)

M0 M1 M2 M3 M4

True
√

mse × 102 7.201 7.181 7.167 8.289 9.264√
fic × 102 6.308 6.309 6.311 7.544 8.335

% best 32 17 33 18 0
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FIG. 4. Simulation results for μ3 = σ . The variance in the left panel, the squared bias in the middle panel and
the total FIC score in the right panel. The dashed red lines are the true values, the grey crosses are the variance
and squared bias parts of the FIC scores on 100 simulated datasets and the full black lines are the averages of
these. Here, we do not show the results for M3 since this model had much higher values than the other models,
both for the variance and squared bias.

display the results. The truly best model, in terms of root mean squared errors, was M2 with
M1 very close. One of these two models was selected by FIC in 69% of the rounds.

The simulations here illustrate two important facts. First, the quality of a model, in terms
of the (true) mse of the corresponding estimator, varies depending on the choice of focus
parameter. The true model is identical in all three experiments, but the model best suited to
estimate the focus parameter varies, as does the true ranking of the different models. We see
that, for some foci, M1 yields the most precise estimates, while for others M2 is better. The
quality of the largest model M0 is also very different: for μ1 the unnecessary parameters in
the model clearly inflate the variance, while this effect is not apparent for the two other foci.
Note that the true ranking of the different models also depends on the observed covariate
matrices X and Z. For ease of comparisons, they are the same in all three experiments, but
different draws of the X and Z matrices can alter the true ranking of the models to some
degree. The correlations between the covariates also influence the ranking of the models.

Second, the simulations demonstrate that our FIC approach successfully estimates the
mean squared error associated with different focus parameters. The approach works both
for foci that are functions of the fixed effect coefficient only and for foci that depend on the
variance-covariance parameters. These, and similar experiments we have conducted, indicate

TABLE 4
Simulation results for μ3. For each model we give the true root

mean squared error for μ̂3, the average FIC score and the
percentage of rounds where the model has the lowest

FIC score (i.e., the winning model)

M0 M1 M2 M3 M4

True
√

mse 0.046 0.045 0.059 1.250 0.375√
fic 0.047 0.045 0.063 1.199 0.388

% best 10 76 14 0 0



888 C. CUNEN, L. WALLØE AND N. L. HJORT

FIG. 5. Simulation results for μ4. The variance in the left panel, the squared bias in the middle panel and the
total FIC score in the right panel. The dashed red lines are the true values, the grey crosses are the variance and
squared bias parts of the FIC scores on 100 simulated datasets and the full black lines are the averages of these.

that the precision of the mse estimates depend on n, m and also on the type of focus param-
eter, with seemingly less accurate estimates when the focus depends more on the covariance
matrix D rather than on the regression coefficients only. However, even if the mse estimates
are not always highly accurate for finite n, the relative ranking of the different candidate
models can still be correct. When faced with a specific dataset, the FIC approach often iden-
tifies the model which estimates the focus with the best precision. When the wrong model is
favoured, it is very commonly a model with almost similar performance as the best one. The
strength and benefit of the FIC approach manifest themselves in the ability to select different
models for different purposes.

7. Application: Energy storage in Antarctic minke whales. As mentioned in the In-
troduction, the minke whale dataset from the JARPA programme has been the object of con-
siderable interest, discussion and controversy. Our analyses concern the body condition of
the whales and whether it has decreased during the 18 years of the JARPA period (1987/88
to 2004/5). Interest lies in the potential changes in body condition of minke whales, be-
cause these could herald deeper transformations in the Antarctic ecosystem; see Konishi et al.
(2008), Konishi and Walløe (2015), Cunen et al. (2020) for more information about the data
and for discussion of the findings. Precise estimates of the evolution of body condition are
also required for the construction of ecological models, as in Mori and Butterworth (2006);

TABLE 5
Simulation results for μ4. For each model we give the true root

mean squared error for μ̂4, the average FIC score and the
percentage of rounds where the model has the lowest

FIC score (i.e., the winning model)

M0 M1 M2 M3 M4

True
√

mse 0.663 0.568 0.567 0.590 0.877√
fic 0.559 0.391 0.392 0.461 0.628

% best 0.03 0.37 0.32 0.13 0.15
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see also Laws (1977). Several proxies for body condition were studied in Cunen, Walløe and
Hjort (2017), but, here, we limit ourselves to the response fatweight, the dissected fat re-
serves of each whale in kilograms. We have measurements of the fat weight of 683 different
whales. Further, for each whale we have measurements of seven independent variables that
are considered relevant for explaining differences in fat weight. The independent variables
are the year of capture, the date within each year, the sex, the body length, the age, the fac-
tor region which denotes one of three different longitudinal areas where the whales were
caught (west, east and Ross sea) and, finally, the binary indicator diatom which denotes
whether the whales had little or substantial diatom coverage (diatom coverage is assumed to
be an indicator of time spent in cold waters). The whales are caught during the austral sum-
mer, from the end of November to March, with date= 1 denoting a whale caught on the 1st
of December.

Our primary interest lies in the potential change in fat weight; so, our focus parameter
will be a function of the parameters related to year. However, in order to obtain a correct
estimate of the yearly decline it is crucial that the rest of the model is well specified. In Cunen,
Walløe and Hjort (2017, 2020) we used considerable efforts to motivate our choice of wide
model, but these arguments are outside the scope of the current article. The full wide model
is quite large with several interactions. According to prior biological knowledge, date is
assumed to be one of the most important variables influencing the fat weight. The whales are
in the Antarctic to gain weight; so, the coefficient related to date is expected to be large and
positive. Also, the relationship between body condition and date is expected to be different
from year to year, possibly due to random fluctuations in krill production. Hence, we include
each year as a random effect influencing the effect of date. Further, it is assumed that the
fat weight may be influenced by many other random processes with yearly variations. We
therefore include the different years as a random effect influencing the intercept too.

The wide model we will use here is similar to the one we used in Cunen, Walløe and
Hjort (2017), with a few alterations, partly due to discussions in the IWC Scientific Com-
mittee meetings in 2017 and 2018. We have the following model specification (in an R-type
notation):

fatweight∼ year+ year2 + bodylength+ sex+ diatom+ date+ date2

+ age+ sex ∗ diatom+ diatom ∗ date+ diatom ∗ date2
+ bodylength ∗ sex+ bodylength ∗ date
+ bodylength ∗ date2 + sex ∗ date+ sex ∗ date2
+ bodylength ∗ sex ∗ date+ bodylength ∗ sex ∗ date2
+ age ∗ sex+ age ∗ date+ age ∗ date2 + age ∗ sex ∗ date
+ age ∗ sex ∗ date2 + year ∗ sex+ year2 ∗ sex+ region

+ year ∗ region+ year2 ∗ region+ sex ∗ region
+ diatom ∗ region+ region ∗ date+ region ∗ date2
+ (

1 + date+ date2 | year).
The model defined above has p = 40 fixed effect coefficients. The notation (1 + date +
date2 | year) specifies the random effect structure; the groups are defined by a categorical
version of the year variable (so n = 18), and the Zi matrix has three columns (a column
of ones for the intercept, date and date squared). We thus have k = 3, giving a total of 47
parameters to estimate.
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As explained in the Introduction, the parameter of main interest in the IWC discussions
was the yearly decline in the fatweight outcome variable. Since we have a quadratic year
term in our wide model, with that part taking the form βyearx + βyear2x

2 for year x, a natural
definition of the yearly decline is μ = βyear + 2βyear2x0, with x0 the mean year in the dataset.
The focus parameter corresponds to the derivative of the mean response, with respect to year,
and evaluated in this mean year time point. This focus parameter can also be interpreted as
the overall slope, the mean curve evaluated at the end point minus its value at the start point,
divided by the length of time. For candidate models with only a linear relationship between
body condition and year, the term simplifies to βyear only. Furthermore, for those submodels
where the fixed effect of year is not included, we have βyear = 0, a parameter value which
then is estimated with zero variance but with potentially big bias. Note also that one should
take care to let the interactions between factor variables, in our case region and sex, and
the year terms be defined as sum-to-zero contrasts. This ensures that βyear and βyear2 can be
interpreted as the parameters governing the overall yearly decline and not the yearly decline,
for say males, in some particular region.

The fitted wide model reveals some interesting features; see Cunen et al. (2020). Most
of the main effect estimates are relatively large (also compared to their standard errors), for
instance, the coefficients related to age, bodylength and date. This also concerns the
terms related to year which are discussed in the next paragraphs. Some of the interaction
terms seem important as well. Still, the model contains a large number of parameters to esti-
mate, and the standard errors are therefore likely to be inflated. After estimation it is crucial
to evaluate whether the wide model adequately fits the data. This is particularly important in
the case of model selection with FIC, since all the mse estimates rely on the wide model. In
Cunen et al. (2020) we investigate the quality of the wide model using different techniques.
We have studied a number of diagnostic plots as recommended in Pinheiro and Bates (2000),
and we have also carried out predictive simulations according to the recommendations in
lme4 (Bates et al. (2014)). Incidentally, these authors use the term “posterior predictive sim-
ulations” which might seem slightly misleading in the present frequentist setting.

In this illustration of the FIC methodology, we have limited ourselves to investigating five
candidate models only; see Table 6. The full model specifications are given in the Appendix.
All the candidate models have a smaller number of fixed effects than the wide model. Note
that the first candidate model, M1, has a more complex random effect structure than the wide
model itself (with k = 6 giving a total of 21 random effect parameters). This choice is meant
to illustrate that there is nothing in the formulae hindering us from having candidate models
with more random effects (or also more fixed effects) than the wide model. When it comes to
interpreting the results, it is usually more natural to choose the wide model to be the largest
possible plausible model, however. The models M2 and M3 are very simple (with few fixed
effects) and differ only in the their random effects. Model M4 includes only the linear year

TABLE 6
Brief description and number of parameters in the wide model and

five candidate models

Description p k d

M0 Wide model 40 3 47
M1 Less interactions, quadratic year term 9 6 31
M2 Very simple, linear year term 5 2 9
M3 Very simple, linear year term 5 1 7
M4 Only linear year term 2 1 4
M5 Like the wide, but without year term 32 3 39
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FIG. 6. Root-FIC scores and estimates of the yearly decline for the wide model (marked with a blue triangle)
and the five candidate models. The scale of measurements is kilograms of fat. The bars represent 95% confidence
intervals for the focus parameter, computed from each of the candidate models under the wide model.

term in addition to a single random effect in the intercept. The last model, M5, is the model
without any year term; so, μM5 = 0. With the current focus parameter, the FIC score of
such a model will have zero variance and a bias which only depends on the estimated focus
parameter in the wide model and its estimated variance, ficM5 = (0 − μ̂)2 − n−1ν̂wide. For
this focus it is therefore not necessary to specify M5; it includes all possible LME models
without any fixed effect of year. In general, a full specification of M5 will be necessary; here,
we use the same model as M0 but without the linear and quadratic year terms.

The results from the model selection are given in the form of an FIC-plot in Figure 6. An
FIC plot is a convenient graphical summary for model selection with FIC; it displays both the
FIC scores and the estimated focus parameters for all the models under consideration. We see
that M2 gets the lowest FIC score and that it has μ̂ = −7.76. The model without any fixed
effect of year had a considerably larger FIC score than any of the other models. The winning
model M2 is very simple,

fatweight∼ year+ bodylength+ sex+ date+ (1 + date | year).

It assumes a linear relationship between body condition and year and contains only a few
additional fixed effects. In the figure we have also included error bars representing the 95%
confidence intervals for the focus parameter. Naturally, model M5 with μM5 = 0 has no un-
certainty around its estimate. Note that the confidence intervals are all computed under the
wide model, since this is assumed to be the true data generating mechanism. From the FIC
plot we can conclude that our best estimate of the focus parameter is around eight kilograms
decline per year, or 80 kg loss of fat over a decade. Furthermore, assuming that the wide
model holds, we may claim that the body condition decline has been negative and significant
over the study period, since the confidence intervals associated with the best models all fall
to the left of zero.

One might wonder about the uncertainty of the FIC scores. How stable are the MSE esti-
mates? We can investigate this by parametric bootstrapping from the fitted wide model. Such
investigations reveal that the ranking of the six models is reasonably stable; see Table 7. In
more than half of the simulation runs, the models M1 or M2 are considered the best according
to FIC. Model M3 is selected quite seldom but the wide model relatively often (around 18%
of the time). The model without any fixed effect of year is chosen in about 5% of the runs.
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TABLE 7
Results from parametric bootstrap from the fitted wide model (1000 simulated

dataset): the percentage of rounds where each model had the lowest
FIC score (i.e., the winning model). Also, the AIC scores of

the six models for the original dataset

M0 M1 M2 M3 M4 M5

% best 17.9 42.3 25.1 7.2 2.1 5.3
AIC −349.97 −284.67 −304.93 −294.57 442.50 −349.84

As an illustration, we have investigated the same six models for another focus parameter,
the probability of observing a whale with more than a certain amount of fat, say 1500 kilo-
grams, given some covariate values, μ2 = P(Y ≥ 1500 | x0, z0). Here, we chose to look at
a 20 year old male whale, caught in the eastern region, of approximately mean length (eight
metres), and which is caught towards the end of the season. Over the full dataset, the average
fat weight of a whale is close to 1500 kilograms. First, we consider a whale caught in year 1,
then a whale caught in year 10.

The FIC scores and estimates are given in Figure 7. For year 1 the estimates range from
0.50 to around 0.90. Naturally, the model without any fixed effect of year gives the same
estimate for both years. Its ranking in terms of FIC is, however, very different; for year 1 the
model without “year” is considered the worst, while for year 10 M5 is not far from the best,
which reflects that year 10 is not far from the average year in the dataset. Note that some of
the models are given a FIC score equal to zero. This is not a paradox and only reflects that
the true mse of these models is likely to be small.

Again, the ability of the FIC approach to select different models for different purposes
is demonstrated by these examples. We have also computed the marginal AIC scores (see
Müller, Scealy and Welsh (2013)) for the seven models under consideration; see Table 7.
According to this criterion, M0, the wide model, is the best model with M5 very close. The
extremely simple M4 is clearly the worst. The disparity between the models preferred by
AIC and by FIC constitutes no paradox and simply reflects that the two criteria have different

FIG. 7. Root-FIC scores and estimated probability of observing a whale with more than 1500 kilograms of
fat. For year 1 the best model is M2, while for year 10 the best model is M4. The wide model is marked with a
blue triangle. The bars represent 95% confidence intervals for the focus parameter, computed from each of the
candidate models under the wide model.
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aims. The models with very high AIC values, like M4, are severely underspecified and fail
to describe key aspects of the data. They should therefore not be used to answer inference
questions in general, but they may still provide precise inference for particular parameters
of interest, as seen in the FIC analyses.

8. Discussion and concluding remarks. In our paper we have developed and investi-
gated a criterion for focused model selection in LME models. The Minke whale applica-
tion presented above demonstrates that the methodology can be useful in practical situations
where the main interest is the precise estimation of a well-defined focus parameter. The sim-
ulations indicate that the criterion estimates the risk associated with each candidate model
with adequate precision and for a range of different foci.

Our framework offers ample flexibility in the choice of the wide model and the candidate
models. The candidate models need not be nested within each other nor be inside the wide
model and may thus include covariates and random effects not present in the wide model.
Also, the wide model need not necessarily be the most complex model, with the maximum
number of parameters, although this may be natural in many cases.

Naturally, our FIC methodology also has some limitations. First, it is important to note
that the derivation of our criterion relies on certain approximations, to biases and vari-
ances and covariances, and these stem from the large-sample behaviour of the estima-
tors. Specifically, the asymptotic distributions are reached when the number of groups
(n) increases to infinity; cf. Demidenko (2013). This applies particularly to focus pa-
rameters which are functions of the variance-covariance parameters. For functions of the
linear mean parameters only, the normal approximations involved will still work well
when the number of groups is small, but the total sample size

∑n
i=1 mi grows. The re-

liance on large-sample arguments is a characteristic shared with several other model se-
lection criteria, like the Akaike and Bayesian Information Criteria (i.e., the AIC and
BIC), see Claeskens and Hjort ((2008a), Chapters 2, 3). For certain foci the accuracy of
our FIC methodology may thus be limited for models with a small number of groups.
However, in such situations it is common to assume that the group-specific effects, the
bi , are fixed rather than random. In that case we simply have a normal linear model,
and our formulae are exact, at least for linear functions of the coefficients (see Sec-
tion 5.4).

Users should also be aware that, in the limit, the bias part of the FIC score will always
dominate the variance part. This is clear from the formulae in Section 5: the variance terms
will disappear as the number of groups increase, but the squared bias will remain. The wide
model, and potentially other candidate models without bias, will thus always be selected
by our FIC procedure if the number of groups is very large. This property is quite natural
considering the aim of FIC based model selection, that is, the most precise estimates of the
focus parameter. If one has enough data to estimate a big, plausible model without prob-
lems, there is not really anything to gain from model selection with FIC. In general, when
the data volume is large, users are encouraged by the FIC scores to use more complex mod-
els.

In the FIC literature one often encounters a certain type of bias-variance trade-off where
more complex models have estimates with large variances and small biases, while simpler
models have more bias but smaller variances. This satisfying situation is not necessarily
present with LME models. In some cases our FIC formulae reveal that μ̂ from a large and
complex model both have small bias and small variance compared to smaller models. This
occurs, for instance, when the models under consideration differ only in the random effects
and the focus parameter is a function of the fixed effect coefficient only. Consider compar-
ing the wide model and a candidate model in such a case. We have XM,i = Xi , and then
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βM,0 = βtrue (see Section 4.1). This leads to the matrices JM,n, KM,n, CM,n becoming block-
diagonal and allows us to simplify the mse formulae significantly. Since the focus parameter
is a function of the fixed effect coefficient only, the nonzero elements in c and cM are equal;
we denote this nonzero part by cβ . Then, we get νM,c = νwide and the FIC formulae reduce to

ficwide = σ̂ 2ĉt
β

(
n∑

i=1

Xt
i V̂

−1
i Xi

)−1

ĉβ ,

ficM = σ̂ 2ĉt
β

(
n∑

i=1

Xt
i V̂

−1
i Xi

)−1

ĉβ + (μ̂wide − μ̂M)2.

The FIC scores will thus be equal only when μ̂wide = μ̂M , and, otherwise, the wide model
will have a smaller score than the simpler candidate model. The two estimators have the
same expectation (both are unbiased), but, in practice, they will only be exactly equal when
V̂i = V̂M,i . The phenomenon described here originates from the asymptotic independence
between regression coefficients and variance-covariance parameters in the wide model (see
Section 3.1). It should influence how we interpret the FIC scores in situations where models
only differ in their random effect structure. If the wide model has a much lower score than the
candidate model, it is clear that the random effect structure in the wide is necessary for the
estimation of the focus. But when the two scores are quite similar, it might be reasonable to
select the smallest model which often has advantages in increased numerical stability and ease
of interpretation. When our focus parameter depends on the variance-covariance parameters
as well as the regression coefficients, we can obtain mse curves that look more like what
we are used to in other FIC applications. The simple candidate model has clearly lower mse
when the true data generating mechanism is within some distance of the candidate model;
outside of that distance, the wide is preferred.

Our criterion depends on the choice of the wide model and how well it represents the
true data generating mechanism. In practice, the model building process will depend on the
specifics of the sampling and the user’s knowledge about the system under study. Depending
on one’s knowledge and preferences, one may use techniques from exploratory data analysis
or graphical tools from the causal inference literature (Greenland, Pearl and Robins (1999)).
In connection with the application described in Section 7, we have conducted some sensitivity
checks and found that moderate changes to the wide model had little effect on the ranking of
the different candidate models. Also, for the wide models we have investigated, the estimate
of the focus parameter in the selected models was reasonably stable. More radical changes to
the wide model should be expected to have greater effect, but we have not fully investigated
this issue. There are different types of model misspecification of the wide model to consider.
The true data generating model may contain unknown fixed or random effects, it may have
random effects drawn from a different distribution than the normal and it may be outside the
linear mixed class altogether. Fully guarding against such misspecification of the wide model
is unattainable, but extending our approach to even wider and more flexible wide models may
lead to some improvements.

Finally, it is important to be aware of the problems of postselection inference; see for in-
stance Claeskens and Hjort ((2008a), Chapter 7). Tests and confidence intervals computed
after a model selection step will, in general, not be valid when one uses the same data for
model selection and inference. Specifically, the confidence intervals might be too narrow, but
the extent of undercoverage will depend on the specific dataset and model selection method-
ology. These problems are not specific to FIC but concern all model selection methods. In
Cunen et al. (2020) we bypassed this problem by splitting the data into two parts, one for
model selection and the second for inference. This is naturally a conservative solution, but
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there are more sophisticated approaches in the general model selection literature; see Berk
et al. (2013), Tibshirani et al. (2016), Charkhi and Claeskens (2018). Naturally, and perhaps
trivially, one can avoid the issues of postselection, and the complexities of model selection in
general by choosing to use the wide model and not do model selection at all; see, for instance,
Ver Hoef and Boveng (2015).

Modifying our FIC approach to other classes of wide models is one of several possible
extensions of the methodology we have presented in this paper. Our FIC procedures assume
that the random effects in both the wide model and the candidate models are normally dis-
tributed. Other distributional assumptions are possible, and our FIC procedure can be adapted
to such cases. Here, one might make use of the contributions of Verbeke and Lesaffre (1997)
and Heagerty and Kurland (2001) on the behaviour of estimators under misspecification of
the random effects distribution in LME models. If one would like to avoid making distribu-
tional assumptions for the random effects, it is possible to estimate the wide model with the
nonparametric maximum likelihood estimator of the random effect distribution (see Verbeke,
Spiessens and Lesaffre (2001)). A FIC procedure using such a wide model might be more
robust against potential misspecification of the random effects distribution

Another line of potential modifications consists of taking into account that the variance-
covariance parameters in LME models are boundary parameters, meaning, for instance, that
the covariance matrix D is required to be positive definite with each diagonal element pos-
itive. If some of the variance-covariance parameters are close to (or on) their boundary, the
resulting asymptotic distribution of the ML estimators is not normal; see the theory exposited
in Claeskens and Hjort ((2008a), Chapter 10).

Our last remark is to point out that, crucially, the methodology developed here can be ex-
tended to FIC model selection methods for several other classes of candidate models and in
different regression frameworks; see Claeskens, Cunen and Hjort (2019). As long as there is
a fixed wide model, under which results for each candidate model corresponding to (4.9) and
(4.11) can be reached, then only few more steps are required to reach a FIC in that frame-
work. In particular, whereas Claeskens and Hjort, 2008b develop one type of mse approxi-
mations and FIC methods for generalised linear models, using local O(1/

√
n) asymptotics,

the present approach actually leads to new and more versatile FIC formulae. These new FICs
will have a different point of departure, namely, the setting up of a fixed wide model, and can
be derived, as in the present paper, without any local asymptotics.

APPENDIX A: CANDIDATE MODELS FOR THE APPLICATION

The following candidate models were investigated for our whale ecology application (Sec-
tion 7). The wide model M0 is given in the main text.

M1: Simplified main effects, with quadratic year term and bigger random effect structure
than the wide:

fatweight∼ year+ year2 + bodylength+ sex+ diatom+ date

+ date2 + bodylength ∗ date+ bodylength ∗ date2
+ (

1 + date+ date2 + bodylength

+ bodylength ∗ date+ bodylength ∗ date2 | year).
M2: Simplified main effects, with linear year term and simplified random effect structure:

fatweight∼ year+ bodylength+ sex+ date+ (1 + date | year).

M3: Simplified main effects, with linear year term and even simpler random effect struc-
ture:

fatweight∼ year+ bodylength+ sex+ date+ (1 | year).
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M4: Only linear year term and random effect on intercept:

fatweight∼ year+ (1 | year).

M5: Same as M0, but without any (fixed) year term. Note that this model was necessary
to specify only for the second focus parameter, μ2 = P(Y ≥ 1500 | x0, z0).

fatweight∼ bodylength+ sex+ diatom+ date+ date2

+ age+ sex ∗ diatom+ diatom ∗ date+ diatom ∗ date2
+ bodylength ∗ sex+ bodylength ∗ date
+ bodylength ∗ date2 + sex ∗ date+ sex ∗ date2
+ bodylength ∗ sex ∗ date+ bodylength ∗ sex ∗ date2
+ age ∗ sex+ age ∗ date+ age ∗ date2
+ age ∗ sex ∗ date+ age ∗ sex ∗ date2 + region

+ sex ∗ region+ diatom ∗ region+ region ∗ date2
+ region ∗ date+ (

1 + date+ date2 | year).
APPENDIX B: FORMULAE FOR THE JM,n, KM,n AND CM,n MATRICES

Let the wide model and the necessary design matrices be defined as in (3.2) and, sim-
ilarly, the candidate model as in (4.2). The wide model has the true parameter vector
θtrue = (βtrue, σtrue,vech(Dtrue)) of dimension p + 1 + k(k + 1)/2. The candidate model
aims for the least false parameters θM,0 = (βM,0, σM,0,vech(DM,0)) of dimension pM +
1 + kM(kM + 1)/2.

We will make use of the vector functions vec and vech. Both take matrices as their input
and output vectors; vec stacks the columns of the input matrix, and vech stacks the lower
triangular part of the matrix. Thus, vech(Dtrue) is the vector of unique elements defining
Dtrue. We have the following relations between the vec() and vech() representations (for
instance from Demidenko (2013)):

(B.1) vec(D) = Wk vech(D),

where Wk is the k2 × k(k + 1)/2 duplication matrix.
In order to compute the FIC scores, we need formulae for the following matrices:

JM,n = −n−1
n∑

i=1

Ewide
∂2	M,i(θM,0)

∂θM∂θ t
M

,

KM,n = n−1
n∑

i=1

Varwide uM,i(y, θM,0),

CM,n = n−1
n∑

i=1

Covwide
{
ui(y, θtrue), uM,i(y, θM,0)

}
,

where uM,i(y, θM) = ∂	M,i/∂θM is the score function of the candidate model and 	M,i is
the log-likelihood for the ith group of the candidate model. The expectation and variance are
taken with respect to the wide linear mixed effect model.
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B.1. Score function and Hessian matrix. First, we need expressions for the score
vector and Hessian matrix of a general LME model like in (3.2) with parameter vector
θ = (β, σ,vech(D)). We will find these with respect to the ‘full’ (p + 1 + k2) × 1 parame-
ter vector θ∗ = (β, σ,vec(D)). Then, we will convert these vectors and matrices to get the
quantities with respect to θ using duplication matrices.

The score function for group or subject i is

u∗
i = ui

(
yi, θ

∗)=
⎛⎜⎝ ∂	i/∂β

∂	i/∂σ{
∂	i/∂ vec(D)

}t

⎞⎟⎠

=

⎛⎜⎜⎝
σ−2Xt

iV
−1
i ei

−miσ
−1 + σ−3et

iV
−1
i ei

−1

2
vec

(
Zt

iV
−1
i Zi

)+ 1

2
σ−2 vec

(
Zt

iV
−1
i eie

t
iV

−1
i Zi

)
⎞⎟⎟⎠ ,

where ei = yi − Xiβ . Note that vec(Zt
iV

−1
i eie

t
iV

−1
i Zi) = Zt

iV
−1
i ei ⊗ Zt

iV
−1
i ei . Note, also,

that we take the transpose of ∂	i/∂ vec(D). This is because we follow the convention from
Demidenko (2013) and Magnus and Neudecker (1988) where differentiation of a scalar by a
column vector gives a row vector.

The Hessian matrix for group or subject i, first with respect to θ∗ = (β, σ,vec(D)), is

I ∗
i = Ii

(
yi, θ

∗)=
⎡⎢⎢⎢⎣
I

p×p
11 I

p×1
12 I

p×k2

13

I t
12 I 1×1

22 I 1×k2

23

I t
13 I t

23 I k2×k2

33

⎤⎥⎥⎥⎦ ,

where

I11 = ∂2	i/∂β
2 = −σ−2Xt

iV
−1
i Xi,

I12 = ∂2	i/(∂β∂σ) = −2σ−3Xt
iV

−1
i ei,

I13 = ∂2	i/
(
∂β∂ vec(D)

)= −σ−2(et
iV

−1
i Zi ⊗ Xt

iV
−1
i Zi

)
,

I22 = ∂2	i/∂σ 2 = mσ−2 − 3σ−4et
iV

−1
i ei,

I23 = ∂2	i/
(
∂σ∂ vec(D)

)= −σ−3(et
iV

−1
i Zi ⊗ et

iV
−1
i Zi

)
,

I33 = ∂2	i/
(
∂ vec(D)∂ vec(D)t)

= 1

2

{
Ri ⊗ Ri − σ−2(Zt

iV
−1
i eie

t
iV

−1
i Zi ⊗ Ri + Ri ⊗ Zt

iV
−1
i eie

t
iV

−1
i Zi

)}
with

ei = yi − Xiβ, Vi = I + ZiDZt
i , Ri = Zt

iV
−1
i Zi.

We have differentiated with respect to θ∗ = (β, σ,vec(D)), but we actually need the dif-
ferentiation with respect to θ = (β, σ,vech(D)). Using the relation in (B.1) and the chain
rule for differentiation, we get

∂	i

∂ vech(D)
= ∂	i

∂ vec(D)

∂ vec(D)

∂ vech(D)
= ∂	i

∂ vec(D)
Wk.

Finally, to obtain a column vector we have{
∂	i/∂ vech(D)

}t = W t
k

{
∂	i/∂ vec(D)

}t

= −1

2
W t

k vec
(
Zt

iV
−1
i Zi

)+ 1

2
σ−2W t

k vec
(
Zt

iV
−1
i eie

t
iV

−1
i Zi

)
.
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The multiplication with the duplication matrix ensures that the elements in ∂	i/∂ vech(D)

belonging to the off-diagonal elements of D are multiplied by 2 compared with the corre-
sponding elements in ∂	i/∂ vec(D). We end up with the following score function:

ui(yi, θ) =
⎛⎜⎝ ∂	i/∂β

∂	i/∂σ

W t
k

{
∂	i/∂ vec(D)

}t

⎞⎟⎠ .

Similarly, for the Hessian matrix we get

∂2	i

∂ vech(D)∂ vech(D)t = W t
k

∂2	i

∂ vec(D)∂ vec(D)t Wk

and

Ii(yi, θ) =

⎡⎢⎢⎣
I11 I12 I13Wk

I t
12 I22 I23Wk

W t
kI

t
13 W t

kI
t
23 W t

kI33Wk

⎤⎥⎥⎦ .

B.2. Finding JM,n. The matrix JM,n is minus the expected value of the Hessian ma-
trix of the candidate model, evaluated at the least false parameters θM,0 = (βM,0, σM,0,

vech(DM,0)), with the expectation taken with respect to the wide model,

JM,n = −n−1
n∑

i=1

Ewide
∂2	M,i(θM,0)

∂θM∂θ t
M

.

We shall need Ewyi = Xiβtrue, Varw yi = σ 2
true(I + ZiDtrueZ

t
i ) = σ 2

trueVi , where we here
and several places below use “w” as shorthand for the subscript “wide.” Let also

eM,i = yi − XM,iβM,0,

along with μe,i = EweM,i = Xiβtrue − XM,iβM,0 and VM,0,i = I + ZM,iDM,0Z
t
M,i . We will

make use of the following general formulae: (i) The expectation of a quadratic form: Let A be
a matrix and x a random vector with expectation μ and covariance matrix 
. Then, ExtAx =
Tr(A
)+μtAμ. (ii) With X a random matrix, E(A⊗X) = A⊗EX and E(X⊗A) = EX⊗A;
cf. Magnus and Neudecker ((1979), Theorem 4.3). (iii) E vec(X) = vec(EX).

We get

JM,n = −n−1
n∑

i=1

⎡⎢⎢⎣
Ew(I11,i) Ew(I12,i ) Ew(I13,i)WkM

Ew(I12,i)
t Ew(I22,i ) Ew(I23,i)WkM

W t
kM

Ew(I13,i)
t W t

kM
Ew(I23,i )

t W t
kM

Ew(I33,i)WkM

⎤⎥⎥⎦

= n−1
n∑

i=1

⎡⎢⎢⎣
J11,i J12,i J13,iWkM

J t
12,i J22,i J23,iWkM

W t
kM

J t
13,i W t

kM
J t

23,i W t
kM

J33,iWkM

⎤⎥⎥⎦
with

J11,i = σ−2
M,0X

t
M,iV

−1
M,iXM,i,

J12,i = 2σ−3
M,0X

t
M,iV

−1
M,0,iμe,i ,

J13,i = σ−2
M,0

(
μt

e,iV
−1
M,0,iZM,i ⊗ Xt

M,iV
−1
M,0,iZM,i

)
,

J22,i = −miσ
−2
M,0 + 3σ−4

M,0

{
σ 2

true Tr
(
V −1

M,0,iVi

)+ μt
e,iV

−1
M,0,iμe,i

}
,
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J23,i = σ−3
M,0

[
σ 2

true vec
(
Zt

M,iV
−1
M,0,iViV

−1
M,0,iZM,i

)
+ μt

e,iV
−1
M,0,iZM,i ⊗ μt

e,iV
−1
M,0,iZM,i

]
,

J33,i = 1

2

[
σ−2

M,0

(
Zt

M,iV
−1
M,0,i

{
σ 2

trueVi + μe,iμ
t
e,i

}
VM,0,iZM,i ⊗ RM,i

+ RM,i ⊗ Zt
M,iV

−1
M,0,i

(
σ 2

trueVi + μe,iμ
t
e,i

)
V −1

M,0,iZM,i

)− RM,i ⊗ RM,i

]
.

Note that
∑n

i=1 J12,i = 0.

B.3. Finding KM,n. The matrix KM,n is the variance of the score function of the can-
didate model, evaluated at the least false parameters θM,0 = (βM,0, σM,0,vech(DM,0)), with
the variance taken with respect to the wide model,

KM,n = n−1
n∑

i=1

Varwide uM,i(y, θM,0)

= n−1
n∑

i=1

⎡⎢⎢⎣
K11,i K12,i K13,iWkM

K t
12,i K22,i K23,iWkM

W t
kM

K t
13,i W t

kM
K t

23,i W t
kM

K33,iWkM

⎤⎥⎥⎦ .

We will then make use of the following well-known facts, found in, for example, Magnus
and Neudecker (1979): vec(ABC) = (Ct ⊗ A)vec(B), and vec(xyt) = y ⊗ x. Note, also,
that eM,i ∼ Nmi

(μe,i, σ
2
trueVi), where we will need the following formula for the variance of

a quadratic form: If A is a matrix and x a random vector with expectation μ and covariance
matrix 
, then VarxtAx = 2 Tr(A
A
) + 4μtA
Aμ. In the first step we get

K11,i = σ−4
M,0σ

2
trueX

t
M,iV

−1
M,0,iViV

−1
M,0,iXM,i,

K12,i = σ−5
M,0X

t
M,iV

−1
M,0,i Cov

(
eM,i, e

t
M,iV

−1
M,0,ieM,i

)
,

K13,i = 1

2
σ−4

M,0X
t
M,iV

−1
M,0,i Cov(eM,i, eM,i ⊗ eM,i)

(
Zt

M,iV
−1
M,0,i ⊗ Zt

M,iV
−1
M,0,i

)t
,

K22,i = σ−6
M,0

[
2σ 4

true Tr
(
V −1

M,0,iViV
−1
M,0,iVi

)+ 4σ 2
trueμ

t
e,iV

−1
M,0,iViV

−1
M,0,iμe,i

]
,

K23,i = 1

2
σ−5

M,0 Cov
(
et
M,iV

−1
i eM,i, eM,i ⊗ eM,i

)(
Zt

M,iV
−1
M,0,i ⊗ Zt

M,iV
−1
M,0,i

)t
,

K33,i = 1

4
σ−4

M,0

(
Zt

M,iV
−1
M,0,i ⊗ Zt

M,iV
−1
M,0,i

)
Var(eM,i ⊗ eM,i)

× (
Zt

M,iV
−1
M,0,i ⊗ Zt

M,iV
−1
M,0,i

)t
.

It is straightforward to show that

Cov
(
eM,i, e

t
M,iV

−1
M,0,ieM,i

)= 2σ 2
trueViV

−1
M,0,iμe,i .

The next covariance term needs more efforts to work out,

Cov(eM,i, eM,i ⊗ eM,i) = σ 2
true
(
Vi ⊗ μt

e,i + μt
e,i ⊗ Vi

)
.

One way to show this is to write eM,i = μe,i + Sz, where z ∼ Nmi
(0, I ) and S is chosen such

that SSt = σ 2
trueVi . We may then write

Cov(eM,i, eM,i ⊗ eM,i) = S Cov
(
z,vec

(
μe,iz

tSt))+ S Cov
(
z,vec

(
Szμt

e,i

))
+ S Cov

(
z,vec

(
SzztSt)).
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The last term disappears because S Cov(z,vec(zzt))(S ⊗ S)t, as well as Cov(z,vec(zzt)), are
equal to zero. We are left with Cov(eM,i, eM,i ⊗ eM,i) = S(St ⊗ μt

e,i) + S(μt
e,i ⊗ St), and,

using S(St ⊗μt
e,i) = (S ⊗1)(St ⊗μt

e,i) = SSt ⊗μt
e,i = σ 2

trueVi ⊗μt
e,i we find the result stated

above. Noticing that

et
M,iV

−1
M,0,ieM,i = vec

(
et
M,iV

−1
M,0,ieM,i

)
= (

et
M,i ⊗ et

M,i

)
vec

(
V −1

M,0,i

)= vec
(
V −1

M,0,i

)t
(eM,i ⊗ eM,i),

one can find the third covariance term,

Cov
(
et
M,iV

−1
M,0,ieM,i, eM,i ⊗ eM,i

)= vec
(
V −1

M,0,i

)t Var(eM,i ⊗ eM,i).

Theorem 4.3 in Magnus and Neudecker (1979) leads to

Var eM,i ⊗ eM,i = σ 2
true(Imi

+ Kmi
)
(
σ 2

trueVi ⊗ Vi + Vi ⊗ μe,iμ
t
e,i + μe,iμ

t
e,i ⊗ Vi

)
,

where Kmi
is a commutation matrix. Let

Q = 2σ 2
true
(
σ 2

trueVi ⊗ Vi + Vi ⊗ μe,iμ
t
e,i + μe,iμ

t
e,i ⊗ Vi

)
,

and note that using properties of commutation matrices Kmi
will disappear in the expressions

(partly due to the duplication matrices). Finally, we have

K11,i = σ−4
M,0σ

2
trueX

t
M,iV

−1
M,0,iViV

−1
M,0,iXM,i,

K12,i = 2σ−5
M,0σ

2
trueX

t
M,iV

−1
M,0,iViV

−1
M,0,iμe,i,

K13,i = 1

2
σ−4

M,0σ
2
trueX

t
M,iV

−1
M,0,i

(
Vi ⊗ μt

e,i + μt
e,i ⊗ Vi

)(
Zt

M,iV
−1
M,0,i ⊗ Zt

M,iV
−1
M,0,i

)t
,

K22,i = σ−6
M,0

{
2σ 4

true Tr
(
V −1

M,0,iViV
−1
M,0,iVi

)+ 4σ 2
trueμ

t
e,iV

−1
M,0,iViV

−1
M,0,iμe,i

}
,

K23,i = 1

2
σ−5

M,0 vec
(
V −1

M,0,i

)t
Q
(
Zt

M,iV
−1
M,0,i ⊗ Zt

M,iV
−1
M,0,i

)t
,

K33,i = 1

4
σ−4

M,0

(
Zt

M,iV
−1
M,0,i ⊗ Zt

M,iV
−1
M,0,i

)
Q
(
Zt

M,iV
−1
M,0,i ⊗ Zt

M,iV
−1
M,0,i

)t
.

B.4. Finding CM,N . The matrix CM,n is the covariance between the score function of
the wide model and the score function of the candidate model, evaluated at the true pa-
rameter vector θtrue = (βtrue, σtrue,vech(Dtrue)) and at the least false parameters θM,0 =
(βM,0, σM,0,vech(DM,0)), respectively, with the covariance taken with respect to the wide
model,

CM,n = n−1 Cov

{
n∑

i=1

ui(yi, θtrue),

n∑
i=1

uM,i(yi, θM,0)

}
.

Since observations from different groups are independent, we only need to consider the co-
variances between the score functions from the same group; so,

CM,n = n−1
n∑

i=1

Cov
{
ui(yi, θtrue), uM,i(yi, θM,0)

}

= n−1
n∑

i=1

⎡⎣ C11,i C12,i C13,iWkM

C21,i C22,i C23,iWkM

W t
kC31,i W t

kC32,i W t
kC33,iWkM

⎤⎦
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which will not be symmetric. With the required stamina and algebraic efforts, we find

C11,i = σ−2
M,0σ

−2
trueX

t
iV

−1
i Cov(ei, eM,i)V

−1
M,0,iXM,i,

C12,i = σ−3
M,0σ

−2
trueX

t
iV

−1
i Cov

(
ei, e

t
M,iV

−1
M,0,ieM,i

)
,

C13,i = 1

2
σ−2

M,0σ
−2
trueX

t
iV

−1
i Cov(ei, eM,i ⊗ eM,i)

(
Zt

M,iV
−1
M,0,i ⊗ Zt

M,iV
−1
M,0,i

)t
,

C22,i = σ−3
M,0σ

−3
true Cov

(
et
iV

−1
i ei, e

t
M,iV

−1
M,0,ieM,i

)
,

C23,i = 1

2
σ−2

M,0σ
−3
true Cov

(
et
iV

−1
i ei, eM,i ⊗ eM,i

)
,
(
Zt

M,iV
−1
M,0,i ⊗ Zt

M,iV
−1
M,0,i

)t
C33,i = 1

4
σ−2

M,0σ
−2
true
(
Zt

iV
−1
i ⊗ Zt

iV
−1
i

)
Cov(ei ⊗ ei, eM,i ⊗ eM,i)

× (
Zt

M,iV
−1
M,0,i ⊗ Zt

M,iV
−1
M,0,i

)t
,

C21,i = σ−2
M,0σ

−3
true Cov

(
et
iV

−1
i ei, eM,i

)
V −1

M,0,iXM,i,

C31,i = 1

2
σ−2

M,0σ
−2
true
(
Zt

iV
−1
i ⊗ Zt

iV
−1
i

)
Cov(ei ⊗ ei, eM,i)V

−1
M,0,iXM,i,

C32,i = 1

2
σ−3

M,0σ
−2
true
(
Zt

iV
−1
i ⊗ Zt

iV
−1
i

)
Cov

(
ei ⊗ ei, e

t
M,iV

−1
M,0,ieM,i

)
.

Here, we need to find a little list of expressions for different covariances, involving the
quantities ei ∼ Nmi

(0, σ 2
trueVi), eM,i ∼ Nmi

(μe, σ
2
trueVi), with μe = Xiβtrue − XM,iβM,0.

Note that eM,i = ei + μe:

1. Cov(ei, eM,i) = Varyi = σ 2
trueVi .

2. Cov(ei, e
t
M,iV

−1
M,0,ieM,i) = 2 Cov(ei,μ

t
eV

−1
M,0,iei) = 2σ 2

trueViV
−1
M,0,iμe.

3. Cov(et
iV

−1
i ei , e

t
M,iV

−1
M,0,ieM,i) = Cov(et

iV
−1
i ei, e

t
iV

−1
M,0,iei) = 2σ 4 Tr(V −1

M,0,iVi).
4. Cov(ei, eM,i ⊗ eM,i) = σ 2

trueVi[μt
e ⊗ Imi

+ Imi
⊗ μt

e].
5. Cov(ei ⊗ ei, eM,i ⊗ eM,i) = Cov(ei ⊗ ei, ei ⊗ ei) = Var(ei ⊗ ei) = σ 4

true(Imi
+

Kmi
)(Vi ⊗ Vi) (again, Kmi

is a commutation matrix).
6. Cov(et

iV
−1
i ei , eM,i ⊗eM,i) = vec(V −1

i )t Cov(ei ⊗ei, eM,i ⊗eM,i) = σ 4
true vec(V −1

i )t ×
(Imi

+ Kmi
)(Vi ⊗ Vi) = 2σ 4

true vec(V −1
i )t(Vi ⊗ Vi) (using the definition of a commutation

matrix).
7. Cov(et

iV
−1
i ei , eM,i) = Cov(et

iV
−1
i ei, ei) = 0 (by a property of quadratic forms used

above).
8. Cov(ei ⊗ ei, eM,i) = Cov(ei ⊗ ei, ei) = 0.
9. Cov(ei ⊗ ei, e

t
M,iV

−1
M,0,ieM,i) = Cov(ei ⊗ ei, eM,i ⊗ eM,i)vec(V −1

M,0,i ) = σ 4
true(Imi

+
Kmi

)(Vi ⊗Vi)vec(V −1
M,0,i) = 2σ 4

true(Vi ⊗Vi)vec(V −1
M,0,i) (using the definition of a commuta-

tion matrix).

Point 4 relies on the fact that Cov(ei, eM,i ⊗ eM,i) = Cov(ei,vec(eie
t
i + eiμ

t
e + μee

t
i )),

and then using vec(ABC) = (Ct ⊗ A)vec(B) and Cov(ei,vec(eie
t
i )) = 0. Point 5 is found

in a similar manner. After some further simplifications (also dealing with the commutation
matrices), we get

C11,M,i = σ−2
M,0X

t
iV

−1
M,0,iXM,i,

C12,M,i = 2σ−3
M,0X

t
iV

−1
M,0,iμe,

C13,M,i = 1

2
σ−2

M,0X
t
i

(
μt

eV
−1
M,0,iZM,i ⊗ V −1

M,0,iZM,i + V −1
M,0,iZM,i ⊗ μt

eV
−1
M,0,iZM,i

)
,
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C22,M,i = 2σ−3
M,0σtrue Tr

(
V −1

M,0,iVi

)
,

C23,M,i = σ−2
M,0σtrue vec

(
Zt

M,iV
−1
M,0,iViV

−1
M,0,iZM,i

)t
,

C33,M,i = 1

2
σ−2

M,0σ
2
true
(
Zt

iV
−1
M,0,iZM,i ⊗ Zt

iV
−1
M,0,iZM,i

)
,

C21,M,i = 0,

C31,M,i = 0,

C32,M,i = σ−3
M,0σ

2
true vec

(
Zt

iV
−1
M,0,iZi

)
.

When the candidate model is the same as the wide model, we get back the information matrix
under the wide model, as expected.
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